MySQL中相同的执行计划,为何有执行快慢的差别

0    94    2

👉 本文共约2907个字,系统预计阅读时间或需11分钟。

前言

今天遇到一个很神奇的现象,在数据库中,相同的执行计划,执行SQL所需要的时间相差很大,执行快的SQL瞬间出结果,执行慢的SQL要几十秒才出结果,一度让我怀疑是数据库抽风了,后面才发现是见识不足,又进入了知识空白区。

场景复现

数据库版本使用的是8.0.23 MySQL Community Server - GPL

由于生产环境数据敏感,禁止随意折腾,我在自己的测试环境,通过如下步骤,构造了一批数据,勉强能够复现出相同的场景来

  1. 使用sysbench构造一万张表,每张表10行记录即可。
  2. create table test.test_col as select * from information_schema.columns;
  3. create table test.test_tab as select * from information_schema.tables;
  4. create table test.test_tc as select * from information_schema.table_constraints;
  5. 执行10次 insert into test.test_tab select * from test.test_tab;
  6. 创建必要的索引

最终我测试表的数据如下

先看执行快的SQL和它的执行计划

再看执行慢的SQL和它的执行计划

对比两个SQL执行计划,选择索引相同,表关联顺序相同,快的执行0.00秒,慢的执行2.45秒,生产环境数据量更多,差异更大。两条SQL差别是执行快的SQL子查询中多了limit 3。

从上述执行计划,我们可以看出,t2表为驱动表,先与t3做关联,得到结果后再与t1做关联,最后将结果集返回给客户端。

我们都知道,MySQL从server层返回数据给client,是一行一行返回的。也就是上层结果集与t1表每关联一行,有结果后,在没有排序的情况下,就是直接返回,并不会等所有行关联完后一起返回。

那么整个关联路径,是怎么样的呢,简化流程后应该是下面两种情况的一个

  1. 从t2取出所有数据,与t3表关联得到所有结果集后;再从t1中取一行关联,每得到一行结果,返回一次数据
  2. 从t2取一行数据,与t3表关联得到一行结果后,再从t1中取一行关联,每得到一行结果,返回一次数据

新的技巧

由于上面两个SQL执行计划、预估成本都相同,无法看出具体执行过程中差异点在什么地方导致执行性能差这么多.

本人提供Oracle、MySQL、PG等数据库的培训和考证业务,私聊QQ646634621或微信db_bao,谢谢!

在MySQL 8.0.18及之后,有一个新功能explain analyze,可以定量分析SQL执行过程中的耗时及实际数据访问条数,拿到我们的场景具体使用一下

从上面的分析结果来看,在驱动表t2执行Index scan on t2 using TABLE_SCHEMA这一步的时候,就存在很大的差异了,执行快的SQL在这一步只扫描了一行记录,耗时0.053毫秒,而执行快的SQL在这一步扫描数量基本上和执行计划估计的一致,扫描了10338行记录,耗时12.845毫秒;驱动表扫描记录越多,那么和后续表关联的nested loop join次数也越多,导致两条SQL执行时间差异巨大。

加大limit的返回限制为5000,驱动表t2扫描的行数增加至99行,执行时间增加至0.201毫秒

从上面的analyze结果,也可以看出来,在测试使用的SQL结构中,关联顺序是方法2,也就是从t2取一行数据,与t3表关联得到一行结果后,再从t1中取一行关联,每得到一行结果,返回一次数据

从官方文档中介绍,explain analyzeexplain format=tree的补充,两者都是8.0出现的新功能,这里简单介绍一下我个人理解的查看这种执行计划的顺序,如果有不正确的地方,还请指正:最先查看第一个缩进最多的行,没有相同缩进时,再向上一个缩进查看,再查看相同缩进的行(如果它有子缩进行,也是先查看缩进最多的行),以如下SQL为例,它的执行计划查看顺序为10->9->12->11->8->13->7->6->5->4->3

图片

  1. 第一个缩进最多的行是第10行,执行计划判断以索引扫描的方式从t2表读取10240条记录,实际从t2表读取了99条记录,在读取这99条记录的操作过程中,读取到第1条记录耗时0.044毫秒,读取到第99条耗时0.157毫秒,由于它是第一个读取的表,也是查询的驱动表,只会读取一次数据
  2. 查看第9行,数据从存储引擎获取后,需要在server层过滤,计划是过滤10240条记录,实际上过滤了99条记录,过滤这99条记录的过程中,第1条记录执行完成耗时是0.046毫秒,第99条记录执行完成耗时是0.201毫秒,驱动表过滤操作也只进行一次
  3. 第11行与第9行缩进相同,但是由于它有子缩进第12行,所以先执行第12行,以普通索引等值查找的方式扫描t3表,这里执行计划每个关联会返回一条记录,但是实际数据返回0条,是由于这个值是平均值,即t2表的99行记录在t3表中查询记录数除以99,取整后得到的值。
  4. 第12行,对从存储引擎层返回的数据,做进一步过滤,这里也循环99次
  5. 第8行,t2 表与t3表的关联,关联后返回记录20条,完成关联耗时为0.834毫秒
  6. 第13行,以普通索引等值查询,从t1表中获取数据,一共要完成20次循环查询,每次循环获取第一条记录的平均时间是0.011毫秒,每次循环获取最后一条记录的时间是1.171毫秒,每次循环平均获取250条记录。
  7. 第7行,与t1关联查询的方法和结果,一共返回5000条记录,返回第1条记录耗时0.124毫秒,返回第5000条记录耗时24.757毫秒
  8. 第6行,limit判断,耗时25.326毫秒
  9. 第5行,物化这5000行记录,物化完成耗时33.046毫秒
  10. 第4行,扫描物化表数据5000条记录,扫描耗时0.765毫秒
  11. 第3行,数据做聚合,返回count数量,耗时33.396毫秒,也是整个SQL执行的总耗时

explain analyze 将执行过程中的索引、连接方式、过滤等信息嵌入了每个执行步骤,初次接触时,可以使用explain结果进行对比查看,以更容易接受和理解执行过程

图片

总结

相同的SQL执行计划,却有不同的数据获取过程,这个在以前的版本中,是很难分析到的,explain\optimizer_trace\profile都不行,现在通过explain analyze能够轻易实现,通过这个工具,也加深了对多表join的一个执行过程的理解,是一个非常实用的工具。

需要注意点:

  1. explain analyze过程中会实际执行具体SQL,但并不会返回SQL的执行结果,返回的结果集是详细执行步骤
  2. 目前只支持select语句,对于insert\update \delete未支持,这点和explain有差别

参考

https://mp.weixin.qq.com/s/w8hhOcSGhWruybsQ4AGx9w

https://dev.mysql.com/doc/refman/8.0/en/explain.html

标签:

头像

小麦苗

学习或考证,均可联系麦老师,请加微信db_bao或QQ646634621

您可能还喜欢...

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注

20 − 8 =

 

嘿,我是小麦,需要帮助随时找我哦
  • 18509239930
  • 个人微信

  • 麦老师QQ聊天
  • 个人邮箱
  • 点击加入QQ群
  • 个人微店

  • 回到顶部
返回顶部